Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway.

نویسندگان

  • L Pirkkala
  • T P Alastalo
  • X Zuo
  • I J Benjamin
  • L Sistonen
چکیده

Inhibition of proteasome-mediated protein degradation machinery is a potent stress stimulus that causes accumulation of ubiquitinated proteins and increased expression of heat shock proteins (Hsps). Hsps play pivotal roles in homeostasis and protection in a cell, through their well-recognized properties as molecular chaperones. The inducible Hsp expression is regulated by the heat shock transcription factors (HSFs). Among mammalian HSFs, HSF1 has been shown to be important for regulation of the heat-induced stress gene expression, whereas the function of HSF2 in stress response is unclear. Recent reports have suggested that both HSF1 and HSF2 are affected during down-regulation of ubiquitin-proteasome pathway (Y. Kawazoe et al., Eur. J. Biochem. 255:356-362, 1998; A. Mathew et al., Mol. Cell. Biol. 18:5091-5098, 1998; D. Kim et al., Biochem. Biophys. Res. Commun. 254:264-268, 1999). To date, however, no unambiguous evidence has been presented as to whether a single specific HSF or multiple members of the HSF family are required for transcriptional induction of heat shock genes when proteasome activity is down-regulated. Therefore, by using loss-of-function and gain-of-function strategies, we investigated the specific roles of mammalian HSFs in regulation of the ubiquitin-proteasome-mediated stress response. Here we demonstrate that HSF1, but not HSF2, is essential and sufficient for up-regulation of Hsp70 expression during down-regulation of the ubiquitin proteolytic pathway. We propose that specificity of HSF1 could be an important therapeutic target during disease pathogenesis associated with abnormal ubiquitin-dependent proteasome function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes.

A small heat-stable polypeptide, ATP-dependent proteolysis factor 1 (APF-1), is an essential component of the ATP-dependent proteolytic system of rabbit reticulocytes (Ciechanover, A., Hod, Y., and Hershko. A. (1978) Biochem. Biophys. Res Commun. 81, 1100-1105). The following evidence supports the view that APF-1 is ubiquitin, a highly conserved heat-stable polypeptide found universally in natu...

متن کامل

Ubiquitin Pool Modulation and Protein Degradation in Wheat Roots during High Temperature Stress.

Ubiquitin, a key component in an ATP-dependent proteolytic pathway, participates in the response of various eucaryotic organisms to high temperature stress. Our objective was to determine if ubiquitin serves a similar capacity for metabolizing altered proteins in higher plants during stress. Degradation of total proteins was measured, and ubiquitin pools (free versus conjugated) were extracted ...

متن کامل

Triad3A regulates ubiquitination and proteasomal degradation of RIP1 following disruption of Hsp90 binding.

Toll-like receptors (TLRs) play a crucial role in innate immunity by recognizing microbial pathogens. Triad3A is an E3 ubiquitin-protein ligase that interacts with the Toll/interleukin-1 receptor domain of TLRs and promotes their proteolytic degradation. In the present study, we further investigated its activity on signaling molecules downstream of TLRs and tumor necrosis factor (TNF) receptor ...

متن کامل

Hsp83 loss suppresses proteasomal activity resulting in an upregulation of caspase-dependent compensatory autophagy

The 2 main degradative pathways that contribute to proteostasis are the ubiquitin-proteasome system and autophagy but how they are molecularly coordinated is not well understood. Here, we demonstrate an essential role for an effector caspase in the activation of compensatory autophagy when proteasomal activity is compromised. Functional loss of Hsp83, the Drosophila ortholog of human HSP90 (hea...

متن کامل

Identification of the ubiquitin-proteasome pathway in the regulation of the stability of eukaryotic elongation factor-2 kinase.

Eukaryotic elongation factor-2 kinase (eEF-2 kinase) is a highly conserved calcium/calmodulin-dependent enzyme involved in the regulation of protein translation and cell proliferation. Rapid changes in the activity and abundance of eEF-2 kinase have been observed on growth stimulation, and increased enzyme activity is characteristic of malignant cell growth. Yet the mechanism for controlling th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 20 8  شماره 

صفحات  -

تاریخ انتشار 2000